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Change Detection
Goal: Given two sets of samples, we want to 

compare the probability distributions behind

Two approaches:
 Distributional change detection: Flexible and robust
 Structural change detection: Interpretable
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{x0i0}n
0
i0=1

i.i.d.∼ p0(x){xi}ni=1
i.i.d.∼ p(x)
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Distributional Change Detection

Goal: Detect change in probability distributions 
behind two sets of samples through distance
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{xi}ni=1
i.i.d.∼ p(x)

{x0i0}n
0
i0=1

i.i.d.∼ p0(x)



5Motivating Example 1
Region-of-interest detection in images:
 and          are significantly different      

when a visually salient object is included inside. 

p(x)

p0(x)

p(x) p0(x)



6Motivating Example 2
Event detection in movies:
 and          are significantly different 

when an irregular event occurs.

a c eb d f g h i j
Time

p(x) p0(x)

p(x) p0(x)



Motivating Example 3
Event detection from Twitter:
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Change score
for BP oil spill
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Kullback-Leibler Divergence 9

 Compatible with maximum likelihood.
 Invariant under input transformation.

(Jacobians cancel in the density ratio) 
 Not a proper distance

(no symmetry and triangularity).
 Sensitive to outliers

(due to log and ratio).

Kullback & Leibler (1951)

p(x)

p0(x)



Density Ratio vs. Density Difference

 Density ratio based 
distance:
 Is the ratio 1?

Density difference 
based distance:
 Is the difference 0?
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p(x) p0(x)

p(x)

p0(x)
p(x)− p0(x)

F (pkp0) =
Z
p0(x)f

µ
p(x)

p0(x)

¶
dx

: Convex function such that              

Lt(p, p0) =
Z ¯̄̄
p(x)− p0(x)

¯̄̄t
dx

t ≥ 0



L2-Distance 11

 Proper distance.
 Robust against outliers (no log, no ratio).
 Compatible with least squares.
 Not invariant under input transformation.



KL vs. L2 with Outliers

L2-distance is bounded.
KL-divergence is unbounded.
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p(x) = 0.9p0(x) + 0.1q(x− μ)
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{xi}ni=1
i.i.d.∼ p(x) {x0i0}n

0
i0=1

i.i.d.∼ p0(x)



Distance Estimation
via Density Estimation

1. Estimate densities                from samples:

 Maximum likelihood, Bayes,
kernel smoother, nearest-neighbor, etc.

2. Plug-in the estimated densities                :

However, this two-step method performs poorly: 
 Density estimation is performed without regards to    

the plug-in step performed later.  
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{xi}ni=1
i.i.d.∼ p(x)

bp(x), bp0(x)

p(x), p0(x)

{x0i0}n
0
i0=1

i.i.d.∼ p0(x)

bL2(p, p0) = Z ³bp(x)− bp0(x)´2dx



Guiding Principle
Vapnik’s principle:

 Support vector machine avoids 
general density estimation and
directly learns the boundary.

Let’s avoid separately estimating        and        , 
and directly compare the densities!
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p(x) p0(x)

Vapnik (Wiley 1998)

Cortes & Vapnik (MLJ1995)

When solving a problem of interest,
one should not solve a more general

problem as an intermediate step



Vapnik’s Principle
in Distance Estimation

Directly estimate the density difference

without estimating each density               .
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Knowing
densities

Knowing
density difference

p(x), p0(x)

p(x), p0(x)

f(x) = p(x)− p0(x)

f(x) = p(x)− p0(x)



Least-Squares Density-Difference
(LSDD) Estimation
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 Directly approximate the density difference by LS:

 Expectation is approximated by empirical average.

Kim & Scott (IEEE-TPAMI2010)
Sugiyama et al. (NIPS2012, NeCo2013)

bf = argminef
Z ³ ef(x)− f(x)´2 dx

f(x) = p(x)− p0(x)L2(p, p0) =
Z
f(x)2dx

= argminef
Z ³ ef(x)´2 dx− 2 Z f(x) ef(x)dx



LSDD for Linear Model
Linear density-difference model:

 ℓ2-regularized solution is given analytically:

Scalable to big data, as long as    is moderate.
Cross-validation is possible for model selection.
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fα(x) =

bX
j=1

αjφj(x) = α
>φ(x)

bα = argmin
α

h
α>Gα− 2bh>α+ λα>α

i
= (G+ λI)−1bh

bh = 1

n

nX
i=1

φ(xi)−
1

n0

n0X
i0=1

φ(x0i0)

G =

Z
φ(x)φ(x)>dx

: Basis functions
: Parametersα = (α1, . . . ,αb)

>
φ(x) = (φ1(x), . . . ,φb(x))

>

: Regularization parameter
: Identity matrix



Theoretical Properties

Parametric convergence:
 Learned parameter converges to the optimal value 

with rate           , which is optimal.

Non-parametric convergence:

 Learned function converges to the optimal function 
with rate                   (         represents a complexity 
of the true function), which is mini-max optimal.
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{xi}ni=1
i.i.d.∼ p(x)

{x0i0}n
0
i0=1

i.i.d.∼ p0(x)



L2-Distance Estimation

Two ways to approximate the L2-distance
based on LSDD:
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L2(p, p0) =
Z ³

p(x)− p0(x)
´
f(x)dx ≈ bh>α

L2(p, p0) =
Z
f(x)2dx ≈ bα>Gbα

bh = 1

n

nX
i=1

φ(xi)−
1

n0

n0X
i0=1

φ(x0i0)

G =

Z
φ(x)φ(x)>dx

bα = (G+ λI)−1bhf(x) = p(x)− p0(x) ≈ bα>φ(x)



Bias Reduction
Consider their linear combination:

 For small regularization parameter   ,

 removes the regularization-induced bias:
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κbh>bα+ (1− κ)bα>Gbα
= bh>G−1bh− λ(2− κ)bh>G−2bh+ op(λ)

bL2(X ,X 0) = 2bh>bα− bα>Gbα

κbh>bα+ (1− κ)bα>Gbα κ ∈ R



A Few Lines in MATLAB!

% Data generation
n=100; x=randn(1,n/2); y=randn(1,n/2)+1; z=[x y];
% LSDD
a=repmat(z.^2,n,1); b=a+a'-2*z'*z; G=sqrt(pi)*exp(-b/4);
h=mean(exp(-b(:,1:n/2)/2),2)-mean(exp(-b(:,n/2+1:n)/2),2);
t=(G+0.1*eye(n))¥h; plot(z,G*t,'*'); L2=2*t'*h-t'*G*t

22
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% Data generation
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Density-Difference Estimation 1 24



Difference of kernel
density estimators (KDE)

Least-squares density
-difference estimation (LSDD)



Density-Difference Estimation 2 25





KDE LSDD



L2-Distance Estimation
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 KDE significantly under-estimates.
 LSDD slightly over-estimates.



L2-Distance vs. KL-Divergence 27

L2-distance is less sensitive to outliers.

Outlier

Nguyen et al. (NIPS2007, IEEE-IT2010)
Sugiyama et al. (NIPS2007, AISM2008)



Unsupervised Change Detection
 Identify change points in time-series:

Use the distance between the distributions 
of sliding-windowed past and current data.
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Results 29

CENSREC Speech Data HASC Accelerometer Data

run stair-up stair-downnoise noise noise

KL-div KL-div

L2-dist L2-dist

Original Originalspeech speech pause pause

L2-distance is more robust!



Summary of 
Distributional Change Detection

Distance estimation between distributions:
 Separate density estimation works poorly.
 Direct density-difference estimation seems sensible.

Don’t simply use KL just because it is popular.
 L2-distance could be more robust against outliers 

and computationally more efficient.
Quadratic mutual information (QMI) can be 

approximated by LSDD similarly:
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QMI =

Z Z ³
p(x,y)− p(x)p(y)

´2
dxdy



31Usages of QMI

QMI between input and output:
 Feature selection/extraction
 Clustering

QMI between inputs:
 Independent component analysis
 Higher-order canonical correlation analysis
 Unsupervised object matching

QMI between input and residual:
 Causal direction inference

Input Output

Input Input
x0

Input Output

Residual

QMI =

Z Z ³
p(x,y)− p(x)p(y)

´2
dxdy
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From Distributional Change
to Structural Change

Through distance estimation, distributional 
change can be detected.
Let’s investigate how distributions are changed 

through interaction between variables.

33

{xi}ni=1
i.i.d.∼ p(x)

x = (x(1), . . . , x(d))>

{x0i0}n
0
i0=1

i.i.d.∼ p0(x)



Motivating Examples
Word co-occurrence in Twitter
Gene regulatory networks
Fraud detection in smart grid
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Gaussian Model

Conditional independence:

Graphical representation:
 Node: Each variable
 Edge: Exists if
 Only connected variables affect! 
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x = (x(1), . . . , x(d))>

: (sparse) inverse covariance matrixΘ

q(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

µ
−1
2
x>Θx

¶

x(1)

x(2)
x(3)

x(6)

x(5)

x(4)
Θi,j 6= 0

Θk,k0 = 0 ⇐⇒ x(k)⊥⊥x(k0) | {x(`)}` 6=k,k0

x(1)⊥⊥x(2) | x(3)



Structural Change Detection
with Gaussian Models

Use Gaussian models for        and        :

Detect sparse change in covariance structure:

37

q(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

µ
−1
2
x>Θx

¶

Change

p(x) p0(x)

q(x;Θ) q(x;Θ0)

x(1)

x(2)
x(3)

x(6)

x(5)

x(4)

x(1)

x(2)
x(3)

x(6)

x(5)

x(4)

Θ −Θ0

q(x;Θ0)



Structural Change Detection
by Graphical Lasso (Glasso)

Sparse maximum likelihood estimation:
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{xi}ni=1
i.i.d.∼ p(x)

max
Θ

nX
i=1

log q(xi;Θ)− λkΘk1 max
Θ0

n0X
i0=1

log q(x0i0 ;Θ
0)− λ0kΘ0k1

q(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

µ
−1
2
x>Θx

¶

Tibshirani (JRSS1996), Friedman et al. (Biostat2008)

{x0i0}n
0
i0=1

i.i.d.∼ p0(x)

λ,λ0 ≥ 0



Structural Change Detection
by Glasso

 Scalable to high-dimensional datasets.
 Statistical properties have been well studied.  

(sparse graphs can be easily recovered)

 Does not work if true      and      are dense.

 Choice of     and      is not straightforward.
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Θ Θ0

λ λ0

max
Θ

nX
i=1

log q(xi;Θ)− λkΘk1 max
Θ0

n0X
i0=1

log q(x0i0 ;Θ
0)− λ0kΘ0k1

Both      and      
are sparse

Change             
is sparse

Θ Θ0 Θ −Θ0

Ravikumar et al. (AS2010)



Structural Change Detection
by Fused Lasso (Flasso)

Directly penalize the difference of parameters 
to be sparse:

 Scalable to high-dimensional datasets.
Work well even if true      and      are dense.
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Tibshirani et al. (JRSS2005)
Zhang & Wang (UAI2010)

max
Θ,Θ0

nX
i=1

log q(xi;Θ) +

n0X
i0=1

log q(x0i0 ;Θ
0)− γkΘ−Θ0k1

Θ Θ0

γ ≥ 0
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Correlation and Dependence

Gaussian models cannot
capture higher-order
correlations.
No correlation does not

imply independence.
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No correlation
but dependent

Independence

No correlation

: (sparse) inverse covariance matrixΘ

q(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

µ
−1
2
x>Θx

¶

x(1)

x(2)



Nonparanormal Models

Gaussian after element-wise transformation:

 More flexible than ordinary Gaussian models.
 Still not flexible

enough.
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f(x) = (f1(x
(1)), . . . , fd(x

(d)))>

x = (x(1), . . . , x(d))>

q(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

µ
−1
2
f(x)>Θf(x)

¶ dY
k=1

|f 0k(x(k))|

: Monotone and
differentiable function
fk

Han Liu et al. (JMLR2009)



Pairwise Markov Networks 44

Gaussian:
Nonparanormal:
Polynomial:

 Highly flexible.

 Normalization                              is intractable.

f (x, x0) = xx0

f (x, x0) = f(x)f(x0)

: feature vectorf(x, x0)

f (x, x0) = [xt, xt−1x0, . . . , x, x0, 1]>

θ = (θ>1,1, . . . , θ
>
d,d)

>
x = (x(1), . . . , x(d))>

q(x; θ) =
q(x;θ)

Z(θ)
q(x;θ) = exp

⎛⎝X
k≥k0

θ>k,k0f (x
(k), x(k

0))

⎞⎠

Z(θ) =

Z
q(x; θ)dx
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Avoiding Density Estimation
Fused lasso for non-paranormal models:

Work well even if true      and      are dense.
 Higher correlations can be partially captured.
 Handling non-Gaussian model is not easy.
 Still need explicit modeling of        and        .
Vapnik’s principle:
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Θ Θ0

γ ≥ 0

p(x) p0(x)

Don’t solve
a more general problem!

max
Θ,Θ0

nX
i=1

log q(xi;Θ) +

n0X
i0=1

log q(x0i0 ;Θ
0)− γkΘ−Θ0k1
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Direct Change Modeling
in Markov Networks

Without separately modeling        and        ,    
let’s directly model the density ratio :

 Individual parameters        are not necessary, 
but their difference is sufficient.

48

Liu et al. (ECML2013, NeCo2014)

p(x) p0(x)
p(x)/p0(x)

α = θ − θ0
θ,θ0

r(x) =
p(x)

p0(x)
≈ q(x; θ)

q(x;θ0)
∝ exp

Ã X
k≥k0

(θk,k0 − θ0k,k0)>f(x(k), x(k
0))

!

q(x;θ) =
1

Z(θ)
exp

Ã X
k≥k0

θ>k,k0f (x
(k), x(k

0))

!



Ratio of Markov Network Models

Normalization:

 Naïve sample averaging is consistent:
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rα(x) =
1

N(α)
exp

ÃX
k≥k0

α>k,k0f(x
(k), x(k

0))

!
α = (α>1,1. . . . ,α

>
d,d)

>

N(α) =

Z
p0(x) exp

Ã X
k≥k0

α>k,k0f (x
(k), x(k

0))

!
dx

≈ 1

n0

n0X
i0=1

exp

ÃX
k≥k0

α>k,k0f(x
0(k)
i0 , x

0(k0)
i0 )

!

r(x) =
p(x)

p0(x)
=⇒

Z
p0(x)r(x)dx =

Z
p(x)dx= 1



KL Density-Ratio Estimation

Density-ratio matching under KL-divergence:

Naïve sample approximation gives

 Tractable for any feature                     .
Add a smoothing regularizer:
Add a group-sparsity regularizer:
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min
α
log

1

n0

n0X
i0=1

exp

⎛⎝X
k≥k0

α>k,k0f(x
0(k)
i0 , x

0(k0)
i0 )

⎞⎠− 1

n

nX
i=1

X
k≥k0

α>k,k0f(x
(k)
i , x

(k0)
i )

+γ
X
k≥k0

kαk,k0k

rα(x) ≈
p(x)

p0(x)min
α

Z
p(x) log

p(x)

p0(x)rα(x)
dx

Nguyen et al. (NIPS2007, IEEE-IT2010)
Sugiyama et al. (NIPS2007, AISM2008)



Primal Optimization

 Simple gradient-projection gives the global solution.
 Efficient when more samples than parameters.
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subject to
X
k≥k0

kαk,k0k ≤ Cγ

min
α
log

1

n0

n0X
i0=1

exp

⎛⎝X
k≥k0

α>k,k0f(x
0(k)
i0 , x

0(k0)
i0 )

⎞⎠
− 1
n

nX
i=1

X
k≥k0

α>k,k0f (x
(k)
i , x

(k0)
i ) + ηkαk2



Dual Optimization

 Simple gradient-projection gives the global solution.
 Efficient when more parameters than samples.
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αk,k0 = max (0, kmk,k0k− γ)
mk,k0

ηkmk,k0k



Theoretical Properties
Change detection is easy as long as 

the change graph is sparse.
 Each graph does not have to be sparse.

53
Liu et al. (AAAI2015)

Change

q(x;Θ) q(x;Θ0)

x(1)

x(2)
x(3)

x(6)

x(5)

x(4)

x(1)

x(2)
x(3)

x(6)

x(5)

x(4)

Change
graph

Θ −Θ0

x(1)

x(2)
x(3)

x(6)

x(5)

x(4)
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Gaussian Data
(d=40, n=n’=100, Change in 15 Edges) 

All use the Gaussian model.
Proposed method and

Flasso work well.
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λ = λ0

kΘ
k
,k
0 k

kΘ
k
,k
0 k

kΘ
k
,k
0 k

Proposed Flasso Glasso

λγγ

Proposed



Gaussian Data
(d=40, n=n’=50, Change in 15 Edges) 

Proposed method works 
well with small samples.
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λγγ

kΘ
k
,k
0 k

kΘ
k
,k
0 k

kΘ
k
,k
0 k

Proposed Flasso Glasso λ = λ0

α = θ − θ0

Proposed



Non-Gaussian Data
(d=9, n=n’=5000, Change in 7 Edges)

 Proposed method (Poly) works well.
 Poly:

 NPN:
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f (x, x0) = [xt, xt−1x0, . . . , x, x0, 1]>

No correlation,
no nonparanormal

γ

kα
k
,k
0 k

Proposed (Poly) 

f(x) = sign(x)x2
Proposed (Poly)
Proposed (NPN)
Proposed (Gaussian)



Take-Home Messages

Learn the change directly:
 Robust distributional change detection by

direct density-difference estimation
 Interpretable structural change detection by 

group-sparse direct density-ratio estimation
Software: http://www.ms.k.u-tokyo.ac.jp/
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{xi}ni=1
i.i.d.∼ p(x) {x0i0}n

0
i0=1

i.i.d.∼ p0(x)

Don’t solve
a more general

problem!


